Example: Creating and Running a Swarm Optimization
Example: Creating and Running a Swarm Optimization
# 1. Start the Julia server in one terminal
cd julia
julia --project=. julia_server.jl
# 2. Run the interactive CLI in another terminal
node packages/cli/interactive.cjs
# 3. From the interactive menu:
# - Select "🧬 Swarm Intelligence"
# - Select "Create Swarm"
# - Enter a name for your swarm (e.g., "OptimizationSwarm")
# - Select an algorithm (e.g., "DE" for Differential Evolution)
# - Enter swarm configuration as JSON (can use {} for defaults)
# - Select "Run Optimization"
# - Define your objective function (e.g., "function(x) return x[1]^2 + x[2]^2 end")
# - Enter optimization parameters (bounds, population size, etc.)
# - View the results when optimization completesimport asyncio
from juliaos import JuliaOS
async def run_optimization():
# Initialize JuliaOS
juliaos_client = JuliaOS(host="localhost", port=8052)
await juliaos_client.connect()
# Create a swarm
swarm = await juliaos_client.swarms.create_swarm(
name="OptimizationSwarm",
algorithm="DE",
config={
"population_size": 50,
"crossover_rate": 0.8,
"mutation_factor": 0.5
}
)
# Run optimization
result = await juliaos_client.swarms.run_optimization(
swarm_id=swarm["id"],
objective_function="function(x) return sum(x.^2) end",
parameters={
"bounds": [(-10, 10), (-10, 10), (-10, 10)],
"max_iterations": 100
}
)
print(f"Best position: {result['best_position']}")
print(f"Best fitness: {result['best_fitness']}")
await juliaos_client.disconnect()
asyncio.run(run_optimization())Last updated


